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ABSTRACT 

Suppose D is a division algebra of degree p over its center F,  which contains 

a primitive p-root of 1. Also suppose D has a maximM separable subfield 

over F whose Galois group is the semidirect product of the cyclic groups 

CpCq, where q -- 2, 3, 4, or 6 and is relatively prime to 1~. (In particular this 

is the case when p is prime ~ 7 and D has a maximal separable subfield 

whose Galois group is solvable.) Then  D is cyclic. The proof involves 

developing a theory of a wider class of algebras, which we call accessible, 

and proving that  they are cyclic. 

I n t r o d u c t i o n  

One of the main open questions in the theory of finite dimensional division alge- 

bras is the cyclicity of a division algebra D of prime degree p _> 5. In this paper  

we consider the following approach to this question. D has a maximal  separable 

subfield K.  If  E is the normal closure of K and G is the Galois group of E/F, 
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then G is a transitive subgroup of Sn. Thus, given a group G, can one somehow 

modify K and prove D is cyclic? One positive result is from [RS], in which it was 

proved (under a few additional hypotheses) that  if G is dihedral then D is cyclic. 

In [Ti2] Tignol shows that  if G = C5 >~ C4 then D is cyclic assuming F has a 

Henselian valuation. We shall prove (assuming F has a primitive p-root of 1) the 

cyclicity of any division algebra having a maximal subfield whose Galois group 

is a semidirect product of Cp by Cq, for q = 3, 4, 6 and p relatively prime to q. 

In particular, if D has prime degree < 7 and has a maximal separable subfield 

whose splitting field has solvable Galois group then D is cyclic. In the course of 

our analysis, we will actually study so-called accessible division algebras. In the 

cases q -- 2, 3, 4, 6 we will show accessible division algebras are cyclic. 

It  turns out that  there are a variety of methods to achieve our goals. We will 

purposely use each of these methods for parts of our results. We believe this will 

maximize the intuition to be derived from our paper. The case q = 2 was done in 

[RS] by explicitly presenting a cyclic maximal subfield. In [MT] the same result 

was proven by a computat ion of the corestriction in algebraic K-theory. We do 

the case q = 4 by, essentially, exhibiting a cyclic maximal subfield. We do the 

cases q = 3 and 6 by a K-theory computation. When F contains an algebraically 

closed field in characteristic 0, we also do the q = 3 case as follows. We show 

that  the generic accessible algebra has center the function field of the projective 

space p2. We explicitly compute the ramification locus of this algebra, and then 

apply a result of Tim Ford ([Fo]) to know that  the algebra is cyclic. 

Throughout  this paper F will be a field of characteristic prime to n containing 

p, a primitive n th  root of one. Frequently we will be considering division algebras 

and properties of maximal subfields. However, when dealing with central simple 

algebras looking at subfields is insufficient. To remedy this, we make the following 

definition. Suppose B/K is a central simple algebra of degree n. We say L C B is 

a splitting subring if L D K,  L is a direct sum of fields, and L/K has dimension n. 

In a similar vein we will discuss Galois extensions L/K where only K is assumed 

to be a field, and we note that  L is necessarily a direct sum of fields Galois over 

K.  Finally, we note that  Kummer  theory applies to such L, and we refer the 

reader to [S] p. 254 for further details. 

1. Accessible algebras 

Assume D/F is a division algebra of degree n, and q is an integer such that  the 
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g.c.d (n, q) = 1. Suppose D has a maximal  subfield K such tha t  the following 

holds. There  is a field E D K such tha t  E l F  is Galois, with Galois group the 

semidirect p roduc t  G = Cn >~ Cq. 

Let a be a fixed generator of Cn. We want to reduce to the case n is a prime 

power. Suppose n = nln2 where (n l ,n2)  = 1. Then  Cn = Cnl • Ca2 where the 

C ~  are cyclic subgroups of order n~. Clearly, the C ~  are Cq-invariant. Set a3-i 

to be a generator  of Cn~. Let E~ denote the fixed subfield E ~ and K~ = Ei M K. 

Then K = K1 |  K2 where [K~: F] = hi. Moreover, E i / F  is Galois with group 

Cn, >1 Cq. Finally, D = D1 |  D2 where each D~ has degree ni. It  follows tha t  

K~ is isomorphic to a maximal  subfield of D~. Clearly, D is cyclic if and only if 

each Di is cyclic. Thus we may assume n = pm is a prime power. Note tha t  we 

can assume n is odd. In fact, if n is a power of 2, r  is also a power of 2. Thus 

any homomorph i sm V: Cq , Aut(Cn)  must  be trivial because (n, q) = 1. 

Let L -- E ~ be the fixed field. By Kummer  theory, E = L(a )  where (2 n : a E 

L* and a ( a )  = pa.  Take R to be the ring Z / n Z .  Let ~- be a generator  of Cq. 

Then ~-a = a~-  where r q = 1 mod (n). Note tha t  we may take r E R and then 

a~ is well defined (mod (L*)~), and our condition is tha t  rq = 1 in R. Let 

t E R be such tha t  rt = 1. L / F  is cyclic Galois of degree q with Galois group 

generated by r.  In addition, E l L  is cyclic Galois of degree n with Galois group 

generated by ~. Since E = K |  L, E is a maximal  subfield of D' = D | L. 

In particular,  D '  is a cyclic algebra. By s tandard  theory (e.g. [D], p. 78) there is 

a ~7 E D '  such tha t  # a  = p a ~  and/7  ~ = b E L*. We write D' = (a, b)L,n and call 

D ' a symbol  algebra. We will omit the subscripts L and n when no ambigui ty  

arises. Since D ~ is a division algebra, a and b must  have order n modulo (L*) n. 

Finally, T acts as 1 | ~- on D ~ = D |  L and this action extends the action on E.  

The fact tha t  E l F  is G-Galois puts  significant restrictions on a. To be precise, 

we compute  a(~-(c~)) -- Tort(a) = T(p to l )  : ptq-(O~). It  follows tha t  T(c~) = c~tz 

where z E L*. Taking n t h  powers we have 

(I) T ( a ) = a t z  n. 

By (1), the subgroup of L*/(L*) n generated by the image of a is a certain 

R[Cq]-module. To explain this, it is useful to change nota t ion and add some 

definitions. The multiplicative group A = L*/(L*) '~ can be viewed as a module  

over the group ring R[Cq], if we write the operat ion of A additively (which we 

shall do whenever possible). Suppose S D R is a commutat ive  ring and 0 E S 
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satisfies 0 q = 1. Let So be the following module over the group ring S[Cq]. As 

an S module So = S, but  the action of T is defined by T(s) = Os for all s E S. 

The discussion above says precisely tha t  Ra C A is an R[Cq]-module which is an 

image of Rt. 

Let us record some easy facts about  A and modules over S. In the result to  

follow, let A A A be the wedge produc t  as abelian groups with the diagonal Cq 

action. If  a C A/x A, we say a is s i m p l e  if (~ has order n and can be wri t ten 

a = a A b  for a ,b  C A. We will say a m o d u l e  over R[Cq] has rank m i f i t  is 

projective and has R-rank m. 

PROPOSITION 1.1: Assume S D R is a local ring which is finitely generated and 

free as an R-module. Let n be a power of the prime p. 

(i) A (as defined above) is a free R-module. 

(ii) Suppose M is a module over S[Cq] which is free over S. Then M is 

projective over S[Cq]. In particular, the modules So are projective. 

(iii) I f  M is a free R- or R[Cq]-submodule of A, then M is a direct summand as 

an R- or R[Cq]-module respectively. 

(iv) The modules So are indecomposable. 

(v) The Krull-Schmidt Theorem applies to modules over S[Cq]. 

(vi) I f  S* contains pq, a cyclic group of order q, then S[Cq] -~ ~o6~q So. 

(vii) I f  S is as in (vi), and M is an S[Cq] module that is free over S, then M is 

a direct sum of So's for various 0 's. 

(viii) There is a one to one correspondence between isomorphism classes of in- 

decomposable finitely generated projective R[Cq] modules and irreducible 

R/pR[Cq] modules. The correspondence is given by P , P /p P .  

(ix) There is a one to one correspondence between R-submodules R a  c A A A 

generated by simple a and rank 2 free R submodules M C A such that if  

M has basis a, b then we can take a = a A b. M is a R[Cq] module i f  and 

only if  Ra  is. 

Proof.: We begin with (i). A minimal generating set for A is the inverse image of 

an R / p R  basis for A/pA.  I t  suffices, then, to show tha t  any element of A of order 

< n lies in pA. To perform this we have to look at L* and use multiplicative 

notat ion.  Suppose x C L* has order m < n modulo (L*) ~. Then  x "~ = yn for 

y C L*. Thus  x = p,y(~/m) where p' is an m root  of one. It  follows tha t  p' = (p)~ 

where r is a multiple of (n/m) .  Thus x = (y,)n/,~ for some y' E L*. Since n is a 
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p power, part (i) is proven. 

Since q is invertible in S, S[Cq] is separable as an algebra over S. Part  (ii) 

follows from [DI] p. 48. Part  (iii) follows because R is self injective, and because 

A / M  being R projective implies it is R[Cq] projective. Because S is local, So 

is indecomposable over S and hence over S[Cq]. This is (iv). Since S[Cq] is 

Artinian, Krull-Schmidt applies (which is (v)). 

Let J be the Jacobson radical of S, so J is nilpotent. The map S* * (S /J)*  

is therefore an isomorphism on subgroups of each side of order prime to p. Also, 

Hensel's lemma (or equivalently, lifting idempotents) shows that x q -  1 has q roots 

in S which, of course, must be the elements of #q. Thus x q - 1 = II0e,q (x - 0). 

Now S[Cq] ~- S[x]/(x q - 1) and x - 0 are mutually relatively prime and so (vi) 

follows. Part  (vii) is a direct result of (v) and (vi). 

Part  (viii) is standard, so we only outline the argument. If P is indecomposable 

and R[Cq] projective then lifting idempotents shows that EndR[cq](P) is local 

and P / p P  is irreducible. If r P / p P  ~ Q/qQ is an isomorphism for P, Q finitely 

generated projective R[Cq] modules, then r lifts to r P ~ Q which must be 

an isomorphism because it has an invertible determinant. 

Finally, the first sentence of part (ix) is easy and well known. The second 

sentence follows from the first. 1 

Let us return to the fields and division algebras D / F ,  K / F ,  E / F ,  L / F  and 

D' = D |  we started with. We have written D' = (a, b)n and we have obtained 

some information about a. We claim there is a symmetric statement about b. 

LEMMA 1.2: We can write D' = (a,b)n, in such a manner that a generates a 

submodule of A isomorphic to an image of Rt and b generates a submodule of A 

isomorphic to an image of R~. 

Proof: We fix a as above. Then b is determined in L* up to an element from 

the norm group NE/L(E*).  Let b be the image of b in L*/NE/L(E*) .  Now 

[(a, b)~] = [D'] = ~-([D']) = [(~-(a), T(b))n] : [(a t, ~-(b))~]. 

Since [(a, b)n] = [(a t, b~)~] we have that T(b)/b ~ e NE/L(E*).  In other words, 

there is an R[Cq]-homomorphism R~ , L*/NE/L(E*)  taking 1 to b. The lemma 

follows because R~ is indecomposable projective. | 

The above description of D' can be improved and generalized. To make the 

generalization, consider the pairing A • A ~ Br(L) which takes the pair (c, d) 
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to the class [(c, d)n]. This is a skew pairing and so defines a R[Cq]-module map 

r A A A  * Br(L). Let a,b be as in 1.2. Then a A b  is Cq-invariant and 

r A b) = [D']. 

With the example of D in mind, let us make the following definition. Suppose 

D / F  is a central simple algebra of degree n. We say D is q-access ib le  if there 

is a Cq-Galois extension L / F  such that  [D |  L] is the image under r of a 

Cq-invariant simple element a of A A A. By 1.1 (ix), a defines a rank 2 R[Cq]- 

submodule M C A. Since clearly M A M ~- Ra, the following definition makes 

sense. If M is a rank 2 R[Cq]-module, we say M is access ib le  if and only if 

M A M has trivial Cq action. Of course, rank 2 accessible R[Cq]-submodules of 

A are precisely the ones which correspond to simple Cq~fixed elements of A A A. 

Note that  we assume above in the definition of accessibility that  [D | L] is 

the image of an element of A h A of order n. This convenience will not lessen the 

generality of our results, because of the following observation. Suppose [D | L] 

is the image of a A b C (AAA)Cq of o rderp"  < n. L e t p S - -  n/p~. Since A i s  

R-free, we can assume a has order n (since if pi divides a we can move p~ over to 

the right side) and b = pSb' where a, b' are linearly independent. Set A ~ = A/p~A 

a n d a  ~ E A ~ A A ' t h e i m a g e o f a A b  ~. T h e n a  ~ i s T  fixed and defines a r a n k 2  

(R/p~R)[Cq]-submodule M' C A'. It follows from 1.1 (viii) that  M '  = M/p~M 

where M is a rank 2 projective R[Cq] module. The embedding M '  C A' lifts to 

a map M * A which must be an injection. Let a E A A A correspond to M. 

Then we can assume (after adjusting by a unit of R) that  a' -- a + p"(A A A), 

and s o p ~ a  = aAb.  Since M ~ A M '  has t r ivia lCq action so does M A M  and 

a is Cq-fixed. Using the argument of 1.3 below, it follows that  [D] -- (n/m)[D'] 

where D' /F  has degree n, and D t | L is the image of a.  (Note that  if the 

original D was a division algebra, then a A b must have order n because such a 

D cannot be an pS power of a degree n algebra unless pS = 1.) 

Thus if D is q-accessible, there is an associated accessible M C A. This associ- 

ation is far from unique because the map A A A * Br(L) is not injective. How- 

ever, if D is associated to M with respect to any embedding M ~ L*/(L*) '~, 

we say D is (q, M)-accessible. 

I t  is important  to see that  there is a converse to the above discussion. Assume 

L / F  is Cq-Galois. Suppose M is an accessible R[Cq]-module and there is an 

inclusion of Cq-modules M C A = L*/(L*) n. Let a e A A A be a simple element 

defining M. 
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THEOREM 1.3: There is a (q, M)-accessible central simple D / F of degree n such 

that  [D' | L] is the image of a under A A A , Br(L). D is unique up to choice 

of a, and changing a changes D by a prime-to-n power in Br(F) .  

Proo~ Let [D'] be the image of a in Br(L), where D' /L  has degree n. Tha t  is, 

D '  ---- ( c ,  d)n where c A d -- a. Since a is Cq-invariant, so is [D']. It  is well known 

that  this implies [D'] is in the image of Br(F) ,  but a reference is hard to find, so 

we supply a proof. 

From Hilbert 's  theorem 90 and the Hochschild-Serre spectral sequence we have 

the exact sequence: 

0 , H2(Cq, L*) , Br(F)  , Br(L) Cq , HU(cq, L*) 

and the claim follows since H3(Cq, L*) = HI(Cq, L*) = O. 

Let [D'] be the image of some [A] �9 Br(F).  Since D'  has degree n, we can 

choose a representative A of degree nq. Write A = A1 | A2 where A1 has degree 

n and A2 has degree q. Then [A1 | L] = [D'] and so A1 | L TM D'. We can 

set D = A1. Since q is prime to n, D is unique in the Brauer group and hence is 

unique. If  we change a, we change D ~ by a power prime to n, and so change D 

by the same power. | 

We have observed above that  if a division algebra D has a maximal subfield 

in a Cn >~ Cq Galois extension, then D is q-accessible. The case when D is only 

central simple is essentially identical. The next result shows that  the converse 

holds when Cn has enough automorphisms. 

PROPOSITION 1.4: Suppose n is a prime power pro, and q divides p - 1. Let 

D / F  be a central simple algebra of degree n. Then D is q-accessible if  and only 

if  D has a splitting subring K,  with K C E and E / F  Galois with group of the 

form Cn >4 Cq. 

Proof." We need to show that  if D is q-accessible, then it has the required K.  

Suppose L / F  is Cq-Galois and M C A = L*/(L*) ~ is an associated accessible 

module. Let a �9 A A A be a simple element defining M, where D'  -- D |  L 

is the image of a.  By 1.1 (vii), M ~- Re G Ro, for some 0, 0' which are q-roots 

of 1. If a generates Ro and b generates Ro,, then (a A b) generates M A M. By 

changing b by a unit in R, we may assume a A b -- a and so D'  ~ (a, b)~. D'  has 

a maximal  commutat ive subring E generated over L by a where a n = a. Then 
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E / F  is Galois with group Cn ~ Cq and K is the fixed subring of Cq. Note for 

future use that  since c~ is Cq-fixed, a A b is Cq-fixed and 00' = 1. | 

I t  can happen that  there are q-accessible D without the added condition 

q[(p-  1). The question comes down to finding for which n and q there are 

accessible M. We answer this in the next result. To state the result let us make 

the following definitions. 

As usual, let n be a prime power p m  and R = Z/nZ. Assume q is prime to p. 

Se t /~  = R/pR, a finite field, and 0 a primitive q-root of i over/? .  Let :~ =/~(t?) 

be the field extension generated by 0. Since pR is nilpotent, there is a unique 

Galois S /R  such that  S/pS = S. By Hensel's lemma, there is a 0 E S which 

is a preimage of 0 and such that  0q = 1. Of course, S//~ is cyclic Galois with 

Galois group generated by the Frobenius map. Thus S/R  is cyclic Galois with 

Galois group generated by 77 where rl(s) E s p + pS for all s E S. Since the group 

generated by 0 maps isomorphically to S*, we have that  7(0) = 0P. 

We say a Cq-module is f a i th fu l  is there is no nontrivial subgroup of Cq which 

acts trivially on M. 

PROPOSITION 1.5: Let n =pm be an odd prime power, and take q pr ime to p. 

The following are equivalent. 

(a) There is an accessible R[Cq]-module M which is faithful over Cq. 

(b) ql(P-  1) orql(p+ 1). 

Proof." Assume (b). If ql(P- 1), then S = R and we are done. If not, the Galois 

group of SIR must be of order 2. Let r /be  as above. ~ also generates the Galois 

group of S[Cq]/R[Cq]. Let 0 E S* be as above. By assumption r/(0) = 0 -1. Let 

M ~ = So @ So-1. I t  is clear that  there is a ~-semilinear automorphism of M ~ 

defined by r / (s l ,  s2) = (s2, sx). If M is the set of r/-fixed elements of M' ,  then 

by Galois descent M is a rank 2 module over R[Cq]. 

Let a l , a2  be generators of So and So-~ respectively. Then ~ = al  A a2 6 

M '  As M '  is Cq-fixed. Since (M A M) <DR S = M '  As M '  it follows that  any 

simple generator of M A M is Cq-fixed. Since M '  is faithful it is clear that  M is 

faithful and (a) is proved. 

Conversely, assume (a). Set M '  = M | S which by 1.1 (vii) has the form 

S6 �9 So. Since any element of M A M is Cq-fixed, the same is true of M '  As M' = 

(M A M) <DR S. Thus 0 = 6 -1. Tha t  is, we can write M' = So G So-1. Let r / b e  

the r~ semilinear automorphism of M '  given by Galois descent. By Krull-Schmidt 
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it is clear that  y'(So) = So or Se-1 and so y(0) = 0 or 0 -1. Since M is faithful, 0 

must be a primitive q-root of 1. In the first case qI(P - 1) and in the second case 

ql(P + 1). | 

For each accessible M we would like to write down generic (q, M)-accessible 

D. To understand this, we must consider which Cq-modules in L* give rise to 

M C L*/(L*) n. In this regard the following theorem is crucial. 

THEOREM 1.6: Suppose we are given a Z[Cq]-module P which is Z-free, with 

a morphism P , M.  Suppose L / F  is Cq-Galois and M , L*/(L*) "~ is a 

Cq-morphism. Then 

(a) There is a Cq-morphism f: P , L* such that the diagram 

p f , L* 

commutes. 

1 1 
M , L*/(L*) n 

(b) I f  we fix f = fo as above, the full set of choices of f is precisely the set of  

fog: P , L*, where g: P ~- (L*) n is an arbitrary Cq-morphism. (Here 

we mean the pointwise product.) 

Proof: Part  (b) is clear. To prove (a), note that  by composition we have a map 

h P " L ' / (L* )  ~. 

The multiplication by n map on L* has kernel #,~, the subgroup of order n. Thus 

we have an exact sequence 

0 , L*/#n '~* L* , L*/(L*) n , 0 

which defines a long exact sequence which includes: 

Homcq (P, L*) . Homcq (P, L*/(L*) ~) . Extc~ (P, L*/#~) , Extcq (P, L*). 

It suffices to show that  f has image 0 in Extc~(P,L*/#~) .  The n power map 

L* . L* induces the multiplication by n map Extcq (P, L*) , Extcq (P, L*), 

which factors as 

Ex te , (P ,L* )  gl E x t c , ( P , L * / # ~ )  g2  Extc , (P ,L*) .  
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Since P is Z-free we have (e.g. [B] p. 61) that 

Extc~ (P, L*) = HI(Cq, Hom(P, L*)), 

which is annihilated by q. Thus the map g2 o gl, which is given by multiplication 

by n, is an isomorphism. 

Since g2(f) = 0 in Extc~ (P, L*) it suffices to show g2 is injective, which will 

follow if gl is surjective. We have the exact sequence 

Extcq (P, L*) 9 ,  Extcq (P, L*/#~) , E x t ~  (P, #~) 

and so it suffices to show that  Ext~q (P, #n) = 0. By [B] p. 61 again this group is 

equal to H2(Cq, Hom(P, #n)) which is annihilated by both n and q. | 

For the moment let P be an arbitrary finitely generated Z-free module over 

Z[Cq]. We call such a P a Cq-lattice. Let F[P] be the group algebra, which is also 

a commutative domain. F[P] has a natural action by Cq. If L / K  is Cq-Galois, 

then any Cq-morphism f:  P �9 L* induces a Cq-invariant algebra morphism 

Cy: F[P] , L. With part (b) above in mind, we are interested in the class of 

all maps Cfg where g: P , L* is a Cq-morphism with image in (L*) n. We show 

that  the set of all such Cfg's is "dense". 

THEOREM 1.7: Suppose L / K  is Cq-Galois and f: P ~ L* is a Cq-morphism. 

Assume 0 # s 6 F[P]. Then there is a Cq-morphism g: P , L* such that 

g(P) C (L*) ~ and r # O. 

Proof: Consider the group ring L[P]. Cq acts naturally on this ring by acting 

on both P and L. Given any Cq-morphism h: P , L*, there is a natural unique 

extension to an L-algebra Cq-invariant Ch: L[P] , L. Since F[P] C L[P], it 

suffices to show: 

LEMMA 1.8: Suppose 0 # s �9 L[P]. There is a Cq-morphism g: P , (L*) ~ C 

L* such that r # 0. 

Recall that  a permutation Cq-lattice is a Ca-lattice with Z basis that  is per- 

muted by Cq. By [CTS] p. 181 and p. 184 there is an exact sequence 0 , P , 

Q , I , 0 of Cq-lattices such that  Q is a permutation lattice and I is a 

direct summand of a permutation lattice. It follows that  Extcq (I, L*) is a direct 

summand of a stun of cohomology groups of the form Hi(H, L*) where H C Cq. 
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Tha t  is, Extcq (I,  L*) = 0. We conclude that  f extends to an if:  Q , L*. But 

now it suffices to prove 1.8 for Q. Tha t  is, we may assume P is a permutat ion 

lattice. 

Write P = P' @ Z[Cq/H] for P' a permutat ion lattice of smaller rank. We 

can write L[P] = L[P'][Z[Cq/H]]. Write s = ~ sim~ where si �9 L[P'] C L[P] 

and mi are in the image of Z[Cq/H]. Let f ' :  P' , L* be the restriction of 

f .  By induction on the rank of P,  there is a f :  P '  , (L*) n C L* such that  
! 

t f ,g , (s i )  r 0 for some i. r  induces ty,g,. L[P][Z[Cq/H]] , L[Z[Cq/H]] 

such that  t f , r  = s' �9 L[Z[Cq/H]] is nonzero. If f " :  Z[Cq/H] , L* is 

the restriction of f ,  it suffices to find a g': Z[Cq/H] , (L*) n C L* such that  

ty,,9,,(s') r 0. In other words we may assume P = Z[Cq/H]. 

In other language, L[P] is the Laurent polynomial ring L[xgH,X~: gH �9 

Cq/H], where Cq acts on the XgH'S via g'(XgH) = Xg,gH. Then s = ~ a ~ m i  

where ai �9 L and the mi are monomials in the XgH'S. Write 0 r bi = f(m~). 

Then it suffices to find g: P , (L*) ~ C L* such that  ~ aib~g(m~) ~ O. To 

do this it suffices to find h: P , L* such that  ~ aibih(m~) r O, and then set 

g = h ~. Finally, it suffices to show: 

LEMMA 1.9: Suppose s E L[P] is nonzero. Then there is a Cq-morphism 

h: P , L* such that r  # O. 

Proof." We can view P C Z[Cq] and so reduce to the case P -- Z[Cq]. Now the 

lemma is just the "algebraic independence of the Galois group elements" which 

is proven in, for example, [BAIl p. 283. Thus 1.9, 1.8 and hence 1.7 are proven. 
| 

We can now construct a generic (q, M)-accessible algebra. Let M be an 

accessible R[Cq]-module and P , M a surjective Cq-morphism, where P is 

a finitely generated Z-free Z[Cq]-module. Form the group algebra F[P] with field 

of fractions F(P).  The group Cq acts on these rings and we set T = F[P] C, and 

K = F ( P ) G  to be the fixed ring and field. 

THEOREM 1.10: Let n =pm be an odd prime power and q such that (n, q) = 1. 

There is a division aJgebra D / K  of degree n which is generic for the class of all 

(q, M)-accessible algebras centrally containing F. That is, there is a 0 r s E T 

and an Azumaya B / T '  where T' = T O / s  ) such that  the following holds: 

(a) B •T' K = D. 
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(b) Suppose E / K '  is (q, M)-accessible, F C K, and 0 ~ t 6 T. Then there is 

an F-map r T' , K' such that B |162 K' is a prime to n power of E and 

r # 0. 

Proof: Set L = F(P), so L / K  is Cq-Galois. There is a natural inclusion P / n P  C 

A = L*/(L*)'L By 1.1 (iii), M is a direct summand of P / n P  and so there is an 

inclusion M C A. Let a E A A A be the simple Cq-invariant element given by 

M and D / K  the (q, M)-accessible algebra given by 1.3. D is a division algebra 

because D |  F ( P )  has the form (x, y)n where x, y are part of a basis of P and 

hence a transcendence basis for F(P). Thus (x, y)~ is a division algebra, which 

implies D is also because q is prime to n. By the proof of e.g. [OS] p.136 or [KO] 

p. 97 there is a T ~ as above and an Azumaya algebra B / T  ~ such that  (a) holds. 

Suppose E / K  ~ is (q, M)-accessible, with respect to the Cq-Galois extension 

L'/K' .  Then E | L' is defined by M C A' = U*/(L'*) ~. There is an induced 

map P , A'. Let f :  P , L ~* be a Cq-morphism given by 1.6. Using 1.7, we 

can assume that  e l ( s t )  # 0, and so e l  defines a Cq-invariant algebra morphism 

r F[P](1/s) �9 L' such that r  # 0. Let r T'  �9 K '  be the restriction 

of r and set E ~ = B |162 K ~. It suffices to show that E t is a prime to n power 

of E.  It suffices by 1.3 to show that  E ~ is associated to M C A ~. That  is, that  

E ~ | L ~ is the image of a generator of M A M C A ~ A A ~. Set A = L*/(L*) '~ and 

E M A M C A A A the element with image [D |  L] in Br(L). Write ~ = a A b. 

Since M is a submodule of P/nP,  we can view a, b as elements of P.  We can then 

define the Azumaya symbol algebra B'  = (a, b)n with center F[P]. Clearly [B'] 

is a preimage of [D' |  L] under the natural map Br(F[P])  , Br(L). But this 

map is injective (e.g. [Mi] p.145), so B' | F[P](1/s) and B | F[P](1/s) 

are'equal in the Brauer group of F[P](1/s). Since M , P / n P  , M is the 

identity, and since E' | L' = (B | F[P](1/s))|162 L', it follows that  E '  |  L' 

is the image of a,  which is what we needed to prove. | 

The generic algebra above is useful because of the following easy fact. 

COROLLARY 1.11: Suppose D / K  from 1.10 is cyclic. I f  E ' /K '  is (q,M) 

accessible, and K' D F, then E' is cyclic. 

Proof." Write D to be the cyclic algebra A(L' /K,  ~, z). By e.g. [$2] p. 528 

there is a t '  6 T and a cyclic extension V/T(1/t ')  such that  as cyclic extensions 

L = V | K. Write z = t"/t  where t, t" 6 T. By changing t '  to st'tt", we 

may assume that  z is invertible in T" = T(1/t') D T'. Then D ~ K | B' 



Vol. 96, 1 9 9 6  SEMIDIRECT PRODUCT DIVISION ALGEBRAS 539 

where B' = A ( V / T " ,  7, z). Since B | K ~ B'  @T,, K,  there is a r 6 T such that  

B | T " ( 1 / r )  -~ B '  | T" (1 / r ) .  By replacing r with st ' t t"r  we may assume 

T " ( 1 / r )  = T ' (1 / r ) .  

By 1.10 there is a r T '  . K '  such that  r  # 0 and B @r K '  is a prime 

to n power of E ' .  Since r extends to T'(1/r) ,  B |162 K '  = B '  |162 K '  is a cyclic 

algebra. Since E is a prime to n power of B |162 K ' ,  E is a cyclic algebra. | 

Of course, in the generic algebra constructed in 1.10 the transcendence degree 

is the rank of P. Since M has rank 2, clearly the minimum rank of P is 2. I t  is 

of interest, then, to find out when P can also have rank 2. The full result is: 

THEOREM 1.12: Let M be a faithful accessible module over Cq. The minimum 

rank of a Cq-lattice P with a surjection P , M is the maximum of 2 and r 

where r is the Euler r function. 

Proof  Since M is faithful, it is obvious that  P is faithful over Cq. Furthermore, 

P |  is a faithful Cq-module over Q. The minimum dimension of such a module 

is r Since M has rank 2, P must have rank at least 2. Thus one direction is 

easy. 

I t  suffices to find a P of rank 2 or r and a surjection P . M. If  r = 1 

then q = 2 and M = R-1  | R-1.  We can set P = Z-1  @ ~]'--1 and we are done 

with this case. Thus we assume q > 2. Let 5 be a primitive qth root of 1 over 

Q. Then the faithful Q[Cq]-module of rank r can be writ ten as Q(6) and this 

contains a lattice P = Z[6]. To construct a surjection Z[6] , M it suffices to 

check two things. First, that  M is cyclic. Second, that  if T is a generator of 

Cq and f ( x )  6 Z[x] is the cyclotomic polynomial which has 6 as a root, then 

f ( r ) M  = O. 

The second fact is quite easy as follows. Recall that  S D R was generated by 

0 such tha t  0q = 1. M | S = So ~) So-*. Since xq - 1 has distinct roots over 

Z / p Z  = R / p R ,  0 and 0 -1 must  be roots of the image f ( x )  �9 R[x]. In other 

language, f (T)So -~ f(T)So-1 = O. 

As for the first fact, we consider the two cases S / R  has rank 1 or 2. In the first 

case, M = Ro �9 Ro-x and the sum of generators of each piece generates M.  In 

the second case, M @R S = So �9 So-x and M is the fixed module of a semilinear 

automorphism ~' of M | S which switches the direct summands.  If a generates 

So then a + ~'(a) generates M. | 
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COROLLARY 1.13: There is a P as in 1.12 of rank 2 if and only i f  q -- 2, 4, 3, 6. 

I t  will useful to have a more concrete description of the generic algebra D from 

1.10. More precisely, we give a description of D '  and the semilinear map T'. To 

achieve this, let P , M be a surjection where P, M are as in 1.12, and fix an 

embedding M C P / n P .  Since P / n P  ~ (1 /n )P /P ,  there is a lattice P '  D P such 

that  P~/P ~- M.  Fixing a simple generator aAb of M A M  defines an isomorphism 

(of Cq-modules) M A M ~- Z / n Z .  We thus have the induced Cq-invariant map 

r P' A pI , Z / n Z .  

View P~ as an additive group. There is a well known natural  map 

qY: H o m ( P '  A P ' ,  Z / n Z )  ~ H 2 ( p  ', Z / n Z )  

defined as follows. Let ~/ E H o m ( P  ~ A P~, Z / n Z )  be viewed as an alternating 

bilineax map  ~}: P~ • P~ , Z / n Z .  Since n is odd it is not hard to see that  there 

is a bilinear ~l': P'  • P'  . Z / n Z  such that  rl(p,p') = ~'(p,p') - ~f (p',p). Define 

a new product  on Z / n Z  • P~ by setting 

(q,p)(q' ,p')  = (q + q' + , ' ( ; , p ' ) , p  + p'). 

This defines an extension of P~ by Z / n Z ,  and hence an element of H 2 ( p  ~, Z/nZ) .  

Since P~ is free abelian, ~(~/) is independent of the choice of 7/~, and one can show 

that  q2 is an isomorphism. The inverse associates an extension 1 . Z / n Z  , 

N �9 P~ , 1 to the alternating map 71(p,p ~) = UpUp, UplU'~ 1 where up E N is 

an inverse image of p E pi.  I t  is immediate that  the map qJ is Cq-invariant. 

Since Cq acts on P~ we can form the semidirect product G = PI >4 Cq. Since 

(q, n) = 1 we have 

HI(Cq, H I ( P  ', Z / n Z ) )  = H2(Cq, H I ( P  ', Z / n Z ) )  

= H2(Cq, Z / u Z )  = H3(Vq, Z / n Z )  

which is 0. It  follows from the Hochschild-Serre spectral sequence that  

H2(G, Z / n Z )  ~ H 2 ( p  ', Z / n Z )  Cq = H om(P '  A P ' ,  Z / n Z )  C,. 

In particular, there is an extension of G by Z / n Z  corresponding to r An easy 

exercise shows that  this extension must have the form N >4 Cq where 1 . 

Z / n Z  * N , P'  , 1 corresponds to r as an element of H 2 ( p  ', Z/nZ) .  In 

particular, this N has a natural  action by Cq. 
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Embed Z / n Z  C F* by sending 1 + nZ to our fixed root p of 1. Then r induces 

r E H2(p  ', F*). Form the twisted group algebra B = Fr Clearly B has a 

natural  action by Cq. Direct computation shows that  B is an Azumaya symbol 

algebra (a, b),~ defined over F[P]. Note that  a is the image of 1 E Z[6] = P and 

b is the image of ~ E Z[6] = P. We can set D' = B QF[P] F(P)  which has an 

induced Cq-action. 

PROPOSITION 1.14: The invariant ring D = D 'cq is the generic algebra of 1.10. 

Proof: This is clear because D is unique once the simple element a/~ b is fixed. 

| 

2. q - - 2 a n d q = 4  

Let us first apply the machinery of Section 1 to the case q = 2. Since 2 is prime, 

the accessible M is either trivial or faithful. The trivial one is M = R @ R with 

trivial C2 action. The proof of 1.4 shows that  if D is (2, M) accessible for this 

M, then D '  = D QF L has a maximal subfield that  is Cn ~ C2 Galois over F.  

The C2 fixed field is then a cyclic maximal subfield of D. Thus we may assume 

that  M is faithful accessible. 

Since n is odd, - 1  C R = Z / n Z  is always true and so by the proof of 1.5 the 

accessible faithful M is R-1  r R-1.  The generic (2, M) accessible algebra can, 

by 1.14, be described as follows. P = Z-1  G Z - z  maps onto M. Thus D 1 is the 

symbol algebra (a, b),~ over F(a, b) where T(a)  ----- a -1 and 7"(5) : 5 -1. By 1.4, D 

is a dihedral algebra in the sense of [RS] and so by 1.11 we have: 

THEOREM 2.1: Suppose D is a 2-accessible algebra over K where K has char- 

acteristic 0 and contains a primitive n = [D: K] root of 1. Then D is cyclic. 

We can handle almost as quickly the case q = 4. Once again we can assume 

M is faithful accessible. In this case, by the proof of 1.12, we can take P -- 

Z[Cq]/(1 + 7 -2) and M = P / n P .  Again, P '  = (1/n)P. Thus P' = (l/n)(Z[p]) = 

(1/n)(Z[x]/(x 2 + 1)). By 1.14, D'  is the symbol algebra (a,b)n over F(a,b). 

Let a,~3 E B C V '  be the images of ( I / n )  + (x 2 + 1) , (1 /n)x  + (x 2 + 1) E P ' .  

Then a n = a, ~'~ = b, a~3a-zj3 -1 is a primitive n root of one, V(a) = ~ and 
= 

THEOREM 2.2: Suppose D is a 4-accessible algebra over K where K has char- 

acteristic 0 and contains a primitive n = [D: K] root of 1. Then D is cyclic. 
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Proof: By 1.11 we can assume D is the generic 4-accessible algebra. Consider 

~, = (a + a - 1 ) ( ~  + / 3 - 1 ) - 1  E D' .  Then ~, is T 2 invariant and we compute that  

~.(~,) = .y-1. It  follows that  D ~ = D |  L ~2 has a maximal subfield with 

dihedral Galois group over K.  By [RS] again D is cyclic. | 

3. T h e  q = 3 case  

Fix q = 3. In this section we will make a detailed study of the generic 3-accessible 

division algebra described in 1.10. Along the way we will give two proofs that  

this generic division algebra is cyclic, one only applying in the case F contains an 

algebraically closed field of characteristic 0. As usual, we can assume that  n, the 

degree of the division algebra, is a prime power pm where p # 2, 3 by assumption. 

Let us note now that  many of the computations in this section were done with 

Mathematica.  

Just  as in Section 2 we reduce to the case of M faithful accessible over C3. Ac- 

cording to the proof of 1.12 such an M must be the image of P = 

Z[Cq]/(1 + T + T 2) where T is a generator of Cq. Since P and M have rank 

2, 

M = P / n P  = R[Cq]/(1 + T + T2). 

Thus we set L = F ( P ) ,  K = F ( P )  Cq, and construct the generic D / K  as in 1.14. 

Let us be more concrete about  all of this. L = F(a,  b), there is an automor-  

phism r of L of order 3 such that  T(a) = b, T(b) = a - lb  -1, and K is the T fixed 

field. D / K  is uniquely defined by the property that  D ~ = D | L is the symbol 

algebra (a, b)~. 

We derive yet another description of L. Form the rational field L'  = 

F(Xl ,  x2, x3) where T(Xi) = Xi+l (index mod 3). If  we set a = Xl/X2, b = x 2 / x  3 

then L C L '  is the subfield of rational functions of degree 0 in the xi's. The T 

action on L is the restriction of the action of T on L ~. 

The K theory techniques we will use involve the following elements of K.  Let 

B be the matr ix  whose i th row is (Ti - l (a) , ' r i - l (b) ,  Ti- l(ab)) .  Substituting the 

xi 's  we compute that  the determinant d of B is 
4 2  2 3  3 2 4 2  2 3  2 4  

X l X  2 -- X l X 2 X  3 -- X l X 2 X  3 + X2X 3 -- X l X 2 X  3 -[- X l X  3 

(XlX X3)  
which is certainly nonzero. By e.g. [BAIl p.281, a, b, ab form a basis of L over 

K.  In particular, there are unique cl E K such that  

(2) c l a  + c2b + c3ab  = 1. 
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We want to derive expressions for the ci. Let ~', i" be the column vectors 

(cl, c2,c3), (1, 1, 1) respectively. Applying T ~-1 to (2) for i = 1, 2, 3 we have 

B~ '=  i'. We can therefore apply Cramer 's  Rule to compute  the ci as follows. Let  

N~ be the mat r ix  B with the i column replaced by i'. Then  c~ = n J d  where n~ 

is the de terminant  of N~. We compute  tha t  

X4X23:3 -}- XlX4X3 - -  3(XlX2X3) 2 ~- XlX2 x4 

?l 1 = (XlX2X3)2 ' 

(3) XlX23 3 - -  3(XlX2X3)2 _~_ XlZ33 .3 _{_ Z2.L 33 ,  .3 

. 2  = ( x l x 2 x 3 )  2 

and 
2 4 + : r 3 x 2 x 3  4 2  X1:I:3X23:2X2X3 2 4  - -X lX  2 -- XlX 3 -~- -}- -- X2X 3 

Tt 3 = (XlX2Xz)2 

The  ci satisfy the relations in 3.1 below, which we can show in two ways. First,  

we can use the relation (2) to derive 3.1 (a) and (b) as we outline below. Second, 

we can verify 3.1(a) and (b) by subst i tut ing the expressions (3) for the ci. We 

used Mathemat ica  to do this. 

LEMMA 3.1: 

(a) c3 = --c~ - c~ + c,c2. 

(b) I f  N~ is the norm of L / K ,  we have Nr(1 - cla) = (ci - c2) 3. 

Proos (a) We star t  with some calculations involving the ci. (2) yields 

1 - cla 
(4) b - 

c2 A- c3a" 

Applying ~- to (2) yields 

c l b + c 2 a - l b - l + c 3 a - 1  = 1, 

and, plugging in (4), yields 

C1(1 -- c la )  c 2 ( c 2 + c 3 a )  53 
+ + - -  = I; 

c2+c3a a(1 - c,a) a 

clearing denominators  yields 

(5) c1(1 - cla)2a + c2(c2 + c3a) 2 + c3(c2 + c3a)(1 - cla)  = a(c2 + c3a)(1 - c la) ,  

which yields a cubic equation 

+ e c3)a + e'a + c" a + + = o, 
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where we do not care about the middle two coefficients c', c". Anyway, 

c 3 -l- C2C3 _ 
+ gr(a) = -1 ,  

so c 3 + c2c3 = - c  3 - c lc3 ,  yielding 

(6)  0 = C 3 -4- C 3 "4- ClC3 -~" C2C 3 = (C 1 -4- C 2 ) ( C  2 - -  C l C  2 "4- C 2 "4- C3). 

Note that cl + c2 # 0 (for example by (3), or by a short argument using (7) and 

(8) below). Thus (6) yields 

c3=  -c -c +clc2, 

which is (a). 

(b) Note that tr(a) = tr(b) = tr((ab) -1) and tr(a -1) = tr(b -1) = tr(ab). 

Taking traces in (2) thus yields 

(7) (cl + c2)tr(a) + c3tr(a -1) = 3; 

dividing through by ab in (2) and taking traces yields 

(8) (Cl A- C2) t r ( a  - 1 )  -4- 3c3 = t r ( a ) .  

Solving for tr(a) and tr(a -1) in terms of Cramer's rule, noting by (a) that the 

denominator is 

(Cl A- C2) 2 --  (--C3) = 3CLC2, 

we have 

tr(a) = cl + c2 + c~., 
ClC2  

t r(a_l)  = -(Cl + c2)c3 + 1 

ClC2  

(Strictly speaking, this solution degenerates in characteristic 3. However we 

could also have obtained the (same) solution by computing c I and c" in (5), a 

slightly longer calculation which however is characteristic-free.) 
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Thus,  we compute  

N ~ ( 1  - c l a ) =  1 - c 1 t r ( a )  + c 2 t r ( a  - 1 )  - c 3 

C l C 2  - c21 - c l c 2  - C l  c 2  - c 3 c 3  - c21c2c3 -4- c 2 - c 4 c 2  

ClC2 
C1(--C~--C~C3--C1r 

ClC2 

C3(C~-~-C~--ClC2) --C~C3--ClC2C3--C~C 2 
C2 

C~C3 -- 2CLC2C3 -- C~C2 
C2 

= C 2 ( - - C  ~ --c~-.~-elc2) - - 2 c 1 ( - - c  ~ --c~3t-ClC2) --c~ 

= ( c l - c 2 )  3. ! 

Before we proceed to considering D, let us derive more information about  K 

in a special case. Assume F has 5, a primitive cube root  of 1, and so is of 

characterist ic prime to 3. We will show K is purely t ranscendental  over F ,  and 

find a concrete transcendence base. Set 

Z 0 ~ X 1 ~ X2"4-X3, 

Z 1 = X 1 --t- 5X 2 -~- 52X3 

and 

Z 2 : X 1 -~- 52X2 -~- ~X 3. 

The fixed field K '  = L '~ has transcendence basis zo, z 3, z2/(z l )  2 by, e.g., [Fi]. 

Since K = L ~ are the elements in K '  of degree 0, it follows tha t  K has transcen- 

dence basis X = 3 3 Zo/Z 1 and Y = zoz2/(zl) 2. 

Since L / K  has degree 3, L has transcendence basis A = zo/zl and Y. Note  

tha t  Y is T fixed and tha t  ~-(A) = 5A. 

We need to write a and b in terms of A and Y. To do this, we first write the 

zi in terms of the xj. By inverting the matr ix  we compute  that :  

1 
3C1 = ~(Zo "~- Zl "+" Z2), 

1 
(9) x2 = ~(zo + 52Zl + 5z2), 

1 
x3 = ~(zo + 5Zl + 52z2). 
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Then 
a = x l / x 2  = zo + zl + z2 = zo/z l  + l + z2/z l  

zo + 52zl + 5z2 Zo/Zl + 52 + 5z2/zl  

A + I + Y / A  A2 + A + Y 

A + 52 + 5 Y / A  A 2 + 52A + 5Y" 

Applying T we have: 
52A 2 + 5A + Y 

b =  
52A 2 -b A + 5Y" 

Since the c~ are in K,  they can be written in terms of X and Y. To achieve 

this, we substitute using (9) and derive that  (after factoring) 

d = 275 (X + 52Y + 5Y2)(hX + 5 2 X y  + y2)  
(X + X 2 - 3XY + y3)2 

X Y  
nl = 27 

X + X 2 - 3 X Y  + y 3 '  

X ( Y -  1)(Y 2 - X ) ( Y -  X )  
n2 = (X  + X 2 -  3 X Y  + Y3)2 

and 
n3 = --62 ( X  + 6Y + 62y2)(62X + 5 X Y  + y2)  

( X  + X 2 - 3 X Y  + y3)2 

Of course, Cl = n l /d ,  c2 = n2/d, and c3 = n3/d. 

We next turn to describing the Brauer group element [D] E Br(K) ,  where we 

assume F is algebraically closed of characteristic 0. Since K = F ( X ,  Y )  we can 

think of K as the function field of the affine space &2 contained in projective 

space ~2. An element of Br(K)  is then described by its ramification on p2. In 

particular, we wish to describe the ramification locus of our element [D]. We 

claim: 

THEOREM 3.2: D ramifies along the single curve in ~2 whose aff/ne equation in 

A 2 is X + X 2 - 3 X Y  + y 3  = O. 

Proof'. F [ A , Y ] / F [ X , Y ]  is an integral extension. Thus any curve C C 

Spec(F[X, Y]) lies under a curve C ~ C Spec(F[A, Y]). Moreover, the degree 

of the function field extension F ( C ) / F ( C )  is prime to the order of any ramifica- 

tion of [D] or [D']. It  follows from e.g. [Se] p. 187 ex. 2 that  [D] ramifies at such 

a C if and only if [Dq ramifies at the C' lying over C. Since D t is the symbol 

algebra (a, b)n, D ~ ramifies precisely along the three curves A 2 + A + Y = 0, 
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A 2 + 52A + (~Y = 0 and A 2 + 6A + (52Y -- 0. These three curves are all 7 con- 

juga te  and so lie over the single curve in Spec(F[X,  Y]) given by the norm.  We 

compute  this no rm to be X + X 2 - 3 X Y  + y3.  

To finish 3.2 we must  show D does not ramify at  infinity. The  line a t  infinity 

is a pr ime of F [ X  -1, Y] which is integral  in F[A -1, Y]. Thus  we must  show tha t  

D t does not ramify  at  infinity, which is immediate .  | 

This  ramif icat ion informat ion is enough to know tha t  D is cyclic, by a result  

of T i m  Ford ([Fo]). 

COROLLARY 3.3: Suppose F is of  characteristic 0 and contains an algebraically 

closed field. Then any 3-accessible algebra is cyclic. 

Proos By 1.11 it suffices to assume F is algebraically closed of character is t ic  0, 

and show the generic 3-accessible a lgebra over F is cyclic. T h a t  is, to show D 

above is cyclic. The  curve given by X + X 2 - 3 X Y  + y3  is easily seen to be a 

nodal  cubic with node at  (1, 1). Since D ramifies only along a nodal  cubic, D is 

cyclic by ([Fo]). By 1.11 we get the result. | 

Of  course, it is of interest  to remove the assumpt ion  in 3.3 tha t  F contains an 

algebraically closed field of characterist ic  0. To do this we give an independent ,  

e lementary  a rgumen t  inspired by K-theory.  

Recall  t ha t  L = F(a, b) is the function field in two variables and T: L ~ L is 

defined by T(a) = b and 7(b) = a - lb  -1. K is the fixed subfield under  7. The  

division a lgebra  D / K  we need to show cyclic has the p roper ty  tha t  D |  L is 

the symbol  algebra (a, b), .  The  degree n of D is pr ime to 3 so it suffices to show 

tha t  the underlying division algebra of corL/K((a ,b).,) is cyclic. T h a t  is, t ha t  

COrL/K((a, b)n) is a symbol  algebra over K of degree n. 

The  compu ta t i on  of corL/I ;  (a, b) is tricky, since the Rosse t -Ta te  ([RT]) m e t h o d  

is very compl ica ted  even in this case, and we do it by means  of a re lated reduction.  

Note for a rb i t r a ry  c E K tha t  

COrL/K(a, e) ~ (N~(a), c) = (1, c) ~ 1 

by the project ion rule, and likewise 

COrn/K(b, C) ,'~ COrL/I,:(C, b) ,.~ 1. 

Also we need the fact tha t  (u, v) ,- (u/v ,  u + v), seen easily from 

I t  V U V 
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Le t  Cl,C2,C 3 in K be as in (2). 

LEMMA 3.4: We have 

COrL/K(a'b)~ (--\ Clc2C3 ,Nr ( 1 - - c l a ~  | / /  

Proo~ For the purposes of this proof, we will write A • B to mean A, B are 

two central simple algebras over L with equal corestrictions in Br(K).  We have: 

1,- (cla, c2b+c3ab)= (cla,(c2+c3a)b), 

SO 

(a ,b ) , -  (c2+c3a, cla)| cl) x (c2+c3a, cla). 

Noting that  

we have 

implying 

- c----~-3cla + 1 ( c 2  + c3a) = 1, 
ClC2 C2 

C 3 1 , ) 
- - - c l a ,  --(c2 + c3a) ,~ 1 

ClC2 C2 

(c2+c3a, c la)~ ( c3 , 1 
CIC2 C2 

C 3 i 

ClC2 C2 

( c 2 + c 3 a ) ) | 1 7 4  1 )  

(c~ + c3a)) | (c2, cl). 

Noting by (4) that  

we have 

1 - c l a  
c2+c3a-- - - ~  b 

COrL/K(C2 + c3a, cla) "~ corL/K ( Clc2C3, _ _  

( '~ COrL/K -- , - -  
ClC2 

1 --bc-2Cla) | corL/K(C2, Cl) 

1 _c la~  | COrL/K(C2, e l ) .  
c2 / 

We conclude by means of the projection formula. | 



Vol. 96, 1 9 9 6  SEMIDIRECT PRODUCT DIVISION ALGEBRAS 

THEOREM 3.5: D is a symbol, for q = 3 and n relatively prime to 6. In fact 

C2 

Proof: In view of 3.1 and 3.4 we have 

(10) D| ~ ( 
(Cl -- c2)3~ clc2'C3 } | (c2, cl) | 

or equivalently (since 3 is prime to n), 

D ' "  ( - c3cl c2 ' (c1--c2)) | 

But this is 

549 

(c3 ) ( c 3 )  (c3 ) 
(11) - - - , c l - c 2  | c2, |  c l ) ~  - , c l - c 2  |  

\ ClC2 ~ ClC2 

On the other hand, 

\ C3 \ C3 

Substituting (12) into the square of (11) yields 

~,J (--(CLC2) -1,c3) | (C2 2,c3) ~ (C2,C3 ~ . D~2 
\ c l  / 

Indeed, since n is odd, the minus sign is irrelevant, and furthermore we see D is 

a tensor power of D | and thus is a symbol, l 

COROLLARY 3.6: Suppose F is a field of  characteristic prime to n, containing 

a primitive n root of  1. Assume D is a 3-accessible algebra over F. Then D is 

cyclic. 

Proof: By 1.11 again it suffices to prove the generic D is cyclic. This is 3.5. 

| 

From our description of the ci we can write down the symbol algebra in 3.5 in 

terms of X and Y. It is interesting that this is a different description of D than 

that  which arises from Ford's result. 
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4. T h e  q = 6 case~ v i a  K t h e o r y  

Combining  the results of Section 3 and [RS] yields tha t  6-accessible algebras are 

cyclic. Indeed,  let M be an accessible module.  If  M is not  faithful, then  an 

accessible (6, M)  a lgebra  is equivalent to an accessible algebra for q = 3 or q = 2. 

Thus  we can assume M is faithful over the cyclic group of order 6. Exac t ly  as 

previously, we can assume n is a pr ime power. 

As in Section 1, M = P/nP for P = Z[0] where 0 is pr imit ive  wi th  06 = 1. 

T h a t  is, P = Z[x]/(x 2 - x + 1). Let  ~ be a generator  of the cyclic group of order 

6. If  L = F ( P ) ,  we can write L = F(x,y) where ~(x) -- y and ~(y) = y/x. 
We change no ta t ion  by set t ing a = x and b = y/x. In these te rms  ~(a) = ab, 
~(ab) = r/2(a) = b, r/(b) = 713(a) = a -1 ,  and r/2(b) = rI4(a) = a-lb -1. If  r = ~/2 

then  T acts  on L exact ly  as in the previous section. Set L1 to be the r invariant  

subfield. 

As before let K be the ~-invariant subfield of L. The  6-accessible generic 

a lgebra  D/K has the p roper ty  D |  L = (a, b)n. Thus  the results of the previous 

section apply  to D |  L1, yielding (D |  El)  | ~ (Cl/C2, c3)n. 

THEOREM 4.1: Every 6-accessible algebra is cyclic. 

Proof" Once again it suffices by 1.11 to show the generic 6-accessible a lgebra  

is cyclic. Let  D1 = (cl/c2, C3)Ll,n. 7} 3 is the nontr ivial  au tomorph i sm of L1/K. 
We need to compute  the act ion of 7 3 o n  the ci. Applying r/3 to equat ion (2) of 

Section 3. We have: 

~3(c l )a -1  + r/3(c2)b -1 + ~3(c3)a-lb-1 = 1. 

ab 
Mult ip lying by ~ yields 

r13(c~33)b+rla(C~33)a+1=r13(1)ab. 

Compar ing  with  (2) and applying r/3 shows 

c2 Cl 1 

C3 C3 C3 

I t  follows tha t  D is a dihedral  a lgebra and so is cyclic by [RS]. | 

In  case n is prime,  the results of this paper  yield the following, pe rhaps  

suggestive theorem.  
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THEOREM 4.2: Suppose D / F  has a maxima/subfield  whose splitting field has 

solvable Galois group over F and let n be the degree of D. Assume F has 

characteristic 0 and contains a primitive n root of 1. I f  n <_ 7 and is prime, then 

D is cyclic. 

Proo~ I t  is known that  D is cyclic except for degrees 5 and 7. But in these 

cases the Galois group has to be a transitive solvable subgroup of the symmetric  

group Sn, and for n prime these are known to be semidirect products of Cn and 

Cq for q dividing n - 1, e.g. [Til] p.372 or [BAI] p.254 ex.14. These algebras are 

accessible and so are covered by this paper. I 

Another way of using the results of this paper  is to bound the size of a prime 

to p extension inducing cyclicity. 

THEOREM 4.3: 

(a) Let D /  F be a division algebra of degree 5 where F contains a primitive 5th 

root of  1. Then there is a field K / F  of degree prime to 5 and less than or 

equal to 6 such that D | K is cyclic. 

(b) Let D /  F be a division algebra of degree 7 where F contains a primitive 7th 

root of  1. Then there is a field K / F  of degree prime to 7 and less than or 

equal to 5! such that D | K is cyclic. 

Proo~ We will prove (a) as (b) is exactly the same. Let L be a maximal subfield 

of D with Galois closure i, and Galois group G = Ga l (L /F )  C $5. Let H t C $5 

be the subgroup C5 ~ C4 where C4 acts on C5 faithfully. Choose H '  such that  

H = H ' n G has a subgroup of order 5. Set K = (L) n.  Since 

IGJ IGH'[ 

JHI IH'I 

the result follows. | 
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